Problem Session (1)

Please provide the reaction mechanisms and fill in the blanks.

1. \mathbf{C} (1.3 eq.), $\mathbf{D}(1.3 \mathrm{eq}),. \mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.$\left.\right) ;$

3-1, LiN(TMS) 2 (1.3 eq.) (67%)
2. E (0.2 eq.), toluene, reflux (36\%)

3-2
(-)-asteriscunolide D
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$
bicyclic compound

3-1

1. H_{2} (balloon), $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$ (0.2 eq.) benzene, $70^{\circ} \mathrm{C}$ (99\%)
2. DBU (1.0 eq.), $\mathrm{THF}, 50^{\circ} \mathrm{C}$ (63%)
(+)-asteriscanolide
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ tricyclic compound

Problem Session (1) -Answer-

Topics: Total syntheses of asteriscanolide

0. Introduction
 Isolation

Isolated from Asteriscus aquaticus L
A. San Feliciano. et al. Tetrahedron Lett. 1985, 26, 2369.)

Some other terpenoids called asteriscunolides were isolated from Asteriscus aquaticus L.

3-3	0-1	0-2	0-3
(+)-asteriscanolide	asteriscunolide $\mathrm{A}(0-1 \mathrm{a})$: $6 Z, 9 Z$ asteriscunolide B (0-1b): 6E, 9Z asteriscunolide C (0-1c): 6Z, 9E asteriscunolide D (0-1d, 3-2): 6E, 9E	naupliolide	aquatolide
	humulanolides		

Biological Activity

Bioactivity of asteriscanolide has not been investigated.
Asteriscunolide A induces apoptosis in human cancer cells, and asteriscunolide D has cytotoxicity against the HT-29 (human colon carcinoma), A-549 (human lung carcinoma), and MEL-28 (human melanoma) cell lines.

Structural Feature

C_{15} sesquiterpene
Bicyclo[6,3,0]undecane skelton and adjoining butyrolactone
5 stereo centers

Total Synthesis

7-desmethylasteriscanolide (asymmetric)

K. I. Booker-Milburn. et. al. Tetrahedron, 1997, 37, 12319. (Problem 1)
asteriscanolide (asymmetric)
P. A. Wender. et. al. J. Am. Chem. Soc. 1988, 110, 5904
L. A. Paquette. et. al. J. Am. Chem. Soc. 2000, 122, 2742
M. L. Snapper. et. al. J. Am. Chem. Soc. 2000, 122, 8071 (Problem 2)
Z.-X. Yu. et. al. Chem. Commun. 2011, 47, 6659
Z.-X. Yu. et. al. Chem. Asian J. 2012, 7, 593
C. -C, Li. et. al. J. Am. Chem. Soc. 2014, 136, 13610 (Problem 3)
asteriscanolide (racemic)
M. E. Krafft. et. al. Synthesis 2000, 1020
M. E. Krafft. et. al. J. Org. Chem. 2001, 66, 7443

Wender's Synthesis

0-4

0-5

Intramolecular [4+4] Cycloaddition

67\%

Yu's Synthesis

1. Booker-Milburn's Synthesis of 7-desmethylasteriscanolide

1-A. Brief Strategy

7.7\% overall 5 steps
7.7\% overal 5 steps

1-B. Reaction Mechanism

$\mathrm{RuO}_{2}+\mathrm{NaIO}_{4} \longrightarrow$

7-desmethylasteriscanolide (1-2A) 9-epi-7-desmethylasteriscanolide (1-2B)

1-C-1. Mechanism of RuO_{4} Oxidation of 1-4

Authors' proposal

The authors proposed that RuO_{4} oxidation proceeds via hydride abstraction to give an intermediate carbocation. But it is confirmed that concerted mechanism shown above fits the experimental data of kinetic isotope effects and calculated conformation of transition state ${ }^{\dagger}$.
Strassner, et. al. stated that their results of the calculation were in good agreement with experimental results from earlier work of Bakke*. Bakke, et. al. investigated the solvent effects, solvent isotope effects, substituent effects, and isotope effects.
${ }^{\dagger}$ M. Drees; T. Strassner. J. Org. Chem. 2006, 71, 1755
*J. M. Bakke; A. E. Frøhaug. J. Phys. Org. Chem. 1996, 9, 310

2. Snapper's Synthesis of Asteriscanolide

2-A. Brief Strategy

Note: The mechanism of the conversion from 2-16 to 2-18 is my proposal.
It is known that one of the carbonyl ligand would be removed by $\mathrm{Me}_{3} \mathrm{NO}$ as shown above, but how iron eliminates from cyclobutadiene is not elucidated.

2-B. Discussion

$\underline{\text { 2-B-1. Regioselectivity }}$ of Electrophilic Addition of 2-10 to 2-1

2-1 attacks 2-10 at the para-position avoiding the steric repulsion.

3. Li's Synthesis of Asteriscunolide D and Asteriscanolide

3-A. Brief Strategy

3-4
3-5

3-B. Reaction Mechanism

3-5

3-9

3-15

3-16

3-3
(+)-asteriscanolide

3-B. Discussion

3-B-1. Stereo- and Chemoselectivity of Hydrogenation of 3-2

3-2

H 6 and H 10 exist inside the macroring and repel H 2 .
To avoid steric repulsion, the butenolide covers α side of 3-2 and Wilkinson's catalyst approaches from β side.

The two-substituted olefin would be hydrogenated first, producing 3-17.
Because of the repulsion between H 6 and H 10 , the enone plane of 3-17 is twisted and electron withdrawal of carbonyl group becomes weaker.
So the enone olefin is electron-richer than butenolide olefin and coordinates to Wilkinson's catalyst faster.

(S: solvent)

view from $>$

3-15E
disfavored

3-18

3-19
minor or not obtained

3-19

3-15Z
favored \downarrow

3-16
H^{\oplus}

3-3
major
| $\|$

3-3

The supposed conformation of 3-19 and 3-3 are shown above as both of the eight-membered rings form boat-chair. But considering the strain of the lactone bridge, $\mathrm{C} 2,3,4,8$ and 9 of $3-3$ is supposed to form flatter plane than the above.

