Endogenous Lipid Mediators

(a) Serhan, C. N.; Chiang, N.; Van Dyke, T. E. Nat. Rev. Immunol. 2008, 8, 349.

(b) Serhan, C. N.; Petasis, N. A. Chem. Rev. 2011, 111, 5922

Arachidonoyl Mediators

The chemical mediators inspire the development of drugs and identification of target proteins involved in eicosanoid signaling.

Chemical Probe for Global Mapping Lipid-Binding Proteins

Niphakis, M. J.; Lum, K. M.; Congnetta, A. B., III; Correia, B. E.; Ichu, T.; Olucha, J.; Brown, S. J.; Kundu, S.; Piscitelli, F.; Rosen, H.; Cravatt, B. F. *Cell* **2015**, *161*, 1668.

Contents of the Main Paper

Lipid chemical probes were used for

- 1. mapping lipid-protein interactions
- 2. making landscape of lipid-binding protein based on the SILAC and LC-MS/MS
- identification of target and off-target proteins of known drugs by competed experiment using SILAC (ligand-based approach to identify drug target engagement)
- 4. HTP ligand screening for the lipid-biding protein (protein-based approach to identify drug target engagement)
- 5. identification of the binding site of the lipid probe and the ligand

1. Chemical Probe for Mapping Lipid-Binding Proteins

1. Experimental workflow for gel-based profiling of lipid-binding proteins

(Et)₂N

æ

N(Et)₂

1. Chemical Proteomic Probes for Mapping Lipid-Binding Proteins in Cells

→ arachidonoyl preferential

oleoyl/palmitoyl preferential

AEA-DA and A-DA probes showed distinct protein labeling profiles.

Probe labeling of membrane and soluble proteins depends on UV irradiation of cells, confirming reversible binding interactions between the probes and cellular proteins AEA-DA and A-DA showed more extensive proteomic labeling profiles compared to OEA-DA, O-DA, PEA-DA, S-DA lipid probes.

2. MS-based proteomic studies on mapping the proteins that interact with the arachidonoyl lipid probes in HEK293T cell

Schematic flow of the SILAC experiment¹⁾ SILAC: stable isotope by labeling amino acid in cell culture

1) Hulce, J. J.; Cognetta, A. B.; Niphakis, M. J.; Tully, S. E.; Cravatt, B. F. Nature Method 2013, 10, 259.

2. Analysis of lipid probe targets

2. Diagram highlighting lipid probe targets (red) in major fatty acid metabolic pathways

SILAC ratios from probe-versus-no UV experiments are indicated in parentheses next to gene names

SCARB1: fatty acid uptake SLC25A20: transport FASN, PNPLA2: biosynthesis ACAD, HADHA: catabolism

Categorization of lipid probe targets based on distribution in DrugBank and analysis of non-DrugBank targets by protein classes considered ligandable or not

The lipid probes might facilitate the discovery of many additional proteins with the potential to bind small-molecule ligands.

For ligandable proteins known or identified herein, the lipid might provide a method to determine drug target engagement and the selectivity of these interactions in cells.

3. Diagram highlighting lipid probe targets (red) in major fatty acid metabolic pathways

Scheme for competitive profiling of ligands and lipid probes

Protein ID and quantification

3. A greater survey of the lipid-interaction proteome to reveal a unique set of additional targets for each drug

Graphical summary of in situ drug profiling with lipid probes

Investigating the proteome-wide interactions of known drugs provides one path for discovering ligand-binding proteins

Next challenge is

whether lipid probes can be adapted for the screening of large compound libraries to discover the selective ligand for the lipidbinding protein.

4. Fluorescent arachidonoyl lipid probe

FluoPol signal was suppressed by the competitor lipid AA

1) http://www.glycoforum.gr.jp/science/word/glycotechnology/GT-C06J.html

4. Adapting Lipid Probes for HTS to Discover NUCB1 Ligands

Concentration-dependent blockade of AEA-DA labeling of recombinant NUCB1 by HTS hit 1

The FluoPol assay was used to screen 16,000 compounds. 100 compounds that produced a 20% or greater reduction in FluoPol signal was identified.

Gel-based competitive profiling with the AEA-DA probe against recombinant hNUCB1 was identified **1** as a strong competitor of NUCB1.

4. Optimization of Hit compound and their activities

Structures and competition gel profiles of amide and ester analogs

5. The identification of biding site of arachidonoyl probe and MJN228 to NUCB1

Schematic flow of Tandem Orthogonal Proteolysis Strategy¹⁾ TEV: tobacco etch virus protease

Conclusion

- 1. Chemical probes are utilized to for mapping lipid-binding protein.
- 2. Combination of lipid probes and SILAC provide a global map of lipid-binding protein.
- 3. Combination of lipid probes and SILAC is utilized to determine drug target engagement and the selectivity of these interactions.
- 4. Fluoroscent lipid probes is utilized for HTP screening of chemical libraries.
- 5. The use lipid probes in Tandem Orthogonal Proteolysis Strategy determines the binding site of the probe and optimized ligand.