Discovery of peptides with selective cytotoxicity by screening a library for loss-of-function variants

2016/2/5 Kotaro Tokumoto

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

Outline

1. Introduction

Melittin and its toxicity

- 2. Screening for gain-of-function variants
 - i. Split-pool method
 - ii. High-throughput screening (Two-step assay)
 - iii. Further study on gain-of-function variants
- 3. Screening for loss-of-function variants (main paper)

1-1. Melittin

- Main component of European Honey Bee venom
- 26 residue α-helical peptide toxin (Only L-amino acids)

1-2. Pore formation

Sengupta, D. et. al. Biochim. Biophys. Acta 2008, 1778, 2308.

1-3. Melittin molecule in membrane

Lee, V. S. Y. et. al. Insect Mol. Biol. 2007, 16, 231.

1-4. Difficulty in detailed study and applications

♦ "Pore" is sensitive to various properties:

- Peptide concentration
- Lipid composition
- pH
- Ionic strength
- Temperature

Transmembrane pore state is usually a minor component of the total peptide population in equilibrium

Hristova, K. et. al. *Biophys. J.* 2001, 80, 801.

Outline

- 1. Introduction
 - Melittin and its toxicity
- 2. Screening for gain-of-function variants
 - i. Split-Pool Method
 - ii. High-Throughput Screening (Two-step assay)
 - iii. Further study on gain-of-function variants
- 3. Screening for loss-of-function variants (main paper)

2-1. Strategy toward gain-of-function variants

2-2. Design of the melittin library

$$V_8$$
 and $L_{16} \rightarrow G$: "glycine zipper" (GXXXG)?

 $\mathbf{T_{10}} \text{ and } \mathbf{T_{11}} \rightarrow \mathbf{A} \text{ or } \mathbf{L}$: change in amphipathicity and polar angle?

 $P_{14} \rightarrow S \text{ or } A$: linear α -helix?

 K_{23} and $R_{24} \rightarrow A \text{ or } Q$: increase in amphipathicity?

 $\mathbf{K_{21}}, \, \mathbf{R_{22}}, \, \text{and} \, \mathbf{Q_{26}} \rightarrow \mathbf{A}, \, \mathbf{Q} \text{ or } \mathbf{L}:$ extra helical conformation at C-terminus?

2-3. Split-pool method (in case of SPPS)

2-4. Tb³⁺ leakage

Andres, J. et. al. Adv. Funct. Mater. 2014, 24, 5029.

2-5. NBD quenching

Moss, R. A.; Bhattacharya, S. J. Am. Chem. Soc. 1995, 117, 8688.

2-6. 2-step assay for gain-of-function variants

2-7. Control experiment

Krauson, A. J. et. al. J. Am. Chem. Soc. 2012, 134, 12732.

2-8. HTL results

Krauson, A. J. et. al. J. Am. Chem. Soc. 2012, 134, 12732.

2-9. Highly active peptides found in HTS

G	1	G	A	V	L	ĸ	V	L	Т	Т	G	L	Р	Α	L	I	S	w	I	K	R	K	R	Q	Q	Native S	equence
1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	Residue #	ŧ
Residues V T present in G A library								T A	TL			P S A		L G					K A Q	R A Q	K A Q	R A Q		QL	Two ster valı	o screen Jes	
											Scre	enin	g Re	sults	8											Tb ³⁺	NBD
G	Ι	G	А	V	L	Κ	V	L	Α	Т	G	L	Ρ	А	L	Т	S	W	Ι	к	R	Α	Q	Q	L	105	87
G	Ι	G	А	V	L	K	V	L	Α	Т	G	L	Ρ	А	L	Ι	S	W		Q	Α	Α	Q	Q	L	96	94
G	Ι	G	А	V	L	К	G	L	Α	Т	G	L	Ρ	А	L	Ι	S	W	Ι	к	Q	Α	Q	Q	Q	93	89
G	Ι	G	А	V	L	К	G	L	Т	Т	G	L	Р	А	L	Ι	S	W	Ι	к	Α	Α	R	Q	L	100	94
G	Ι	G	А	V	L	К	v	L	Α	т	G	L	Р	А	L	Ι	S	W	Ι	к	Α	Α	Q	Q	L	92	90
G	Ι	G	А	V	L	Κ	V	L	Α	т	G	L	Ρ	А	L	Ι	S	W		Q	R	Α	R	Q	Q	107	95
G	Ι	G	А	V	L	К	v	L	Α	т	G	L	Р	А	L	Ι	S	W	Ι	Q	Q	Α	Q	Q	L	100	99
G	Ι	G	А	V	L	Κ	G	L	Α	Т	G	L	Ρ	А	L	Ι	S	W		Q	R	Α	Q	Q	Q	98	92
G	Ι	G	А	V	L	К	V	L	Т	т	G	L	Ρ	А	L	Ι	S	W		к	Q	Α	R	Q	Q	102	84
G	Ι	G	А	V	L	К	v	L	Т	т	G	L	Р	А	L	Ι	S	W	Ι	к	R	Α	Q	Q	Q	100	90
G	Ι	G	А	V	L	К	V	L	Α	т	G	L	Ρ	А	L	Ι	S	W		Q	R	к	Q	Q	Q	96	87
G	Ι	G	А	V	L	К	v	L	Α	т	G	L	Р	А	G	Ι	S	W	Ι	Q	R	Α	R	Q	L	92	83
G	Ι	G	A	V	L	Κ	V	L	Α	Т	G	L	Ρ	А	L	Ι	S	W	I	Q	R Q	х	R	Q	Q	95	83
G	Ι	G	А	V	L	Κ	v	L	Α	Т	G	L	Ρ	А	L	Ι	S	W	Ι	Q	Α	Q	Q	Q	L	100	93
Strongly Excluded								L			S A		G					Α		K Q	Α						

Krauson, A. J. et. al. J. Am. Chem. Soc. 2012, 134, 12732.

2-10. Highly active peptides found in HTS

2-11. Selected sequences for further study

2-12. LIC₅₀ values measured in various lipid composition

2-13. Membrane orientation of gain-of-function variants

2-14. Structural implification

Outline

1. Introduction

Melittin and its toxicity

- 2. Screening for gain-of-function variants
 - i. Split-Pool Method
 - ii. High-Throughput Screening (Two-step assay)
 - iii. Further study on gain-of-function variants
- 3. Screening for loss-of-function variants (main paper)

3-1. Design of screening for *loss-of-function* variants

"loss-of-function" variants ... important in investigating selectively toxic analogues Study on sequences in this area is needed Peptide Lipid Concentration Composition *Gain-of-* Pepeide:Lipid *function* ≈ 1:1000 POPC 100%

Loss-of-	Peptide:Lipid	POPC 90%	
function	≈ 1:20	POPG 10%	

* Melittin: becomes active at P:L ≈ 1:200

3-2. HTL results (high peptide conc.)

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-3. Selected *loss-of-function* sequences

Melittin	G	I	G	А	v	L	к	v	L	т	т	G	L	Р	А	L	I	s	w	I	к	R	к	R	0	0
Variations					-			G		A	L			A S		G					A Q	A Q	A Q	A Q	~	- L
MelP5	G	I	G	A	v	L	к	v	L	А	т	G	г	Р	А	L	I	ន	W	I	к	A	A	Q	Q	L
	G	I	G	А	v	г	к	G	г	т	т	G	г	S	А	г	I	s	w	I	A	Q	Q	Q	Q	L
	G	I	G	A	v	L	к	G	L	А	L	G	L	А	А	G	I	ន	W	I	A	Q	Q	R	Q	Q
lces	G	I	G	A	v	г	к	G	L	A	L	G	г	Р	А	G	I	s	w	I	к	Q	Q	Q	Q	L
1	G	I	G	А	v	L	к	G	г	А	L	G	г	Р	А	G	I	s	w	I	А	?	?	õ	õ	?
n Se elN	G	I	G	А	v	L	к	v	L	А	т	G	L	А	А	г	I	S	W	I	к	0	к	R	õ	0
N nctic	G	т	G	A	v	т.	к	G	т.	т	T.	G	т.	Α	A	T.	т	S	w	т	ĸ	~	0	A	~	~ O
if Fu	G	<u>т</u>	G	Δ	v	т.	ĸ	v	т.	- т	- т	G	т.	P	Δ	- C	<u>-</u> т	s	w	<u>т</u>	ĸ	R	Σ	Δ	× 0	~
0 SSS 0	G	- -	C	7	77	<u>т</u> .	v	C	T.	<u> </u>	Ŧ	G	T	Ð	7	G	- -	c	TAT	- -	v	~		7	×	×
ed L Me	9	<u>+</u>	0	7	V 77	- -	TZ	37				9	<u>+</u>	F	~	9	<u>+</u>	2	VV	<u>+</u>	7	×	V O	~	×	
electo	G	<u> </u>	G	A -		ц -	к 	V	<u>ь</u>	Т —	-L-	G	<u>_</u>	P	A	G	<u> </u>	5	w	<u> </u>	A	A	<u>Q</u>	A	Q	Ц
Š	G	I	G	A	V	Г	ĸ	G	Ь	Т	Г	G	Г	P	A	G	I	S	W	I	Q	Q	ĸ	R	Q	Q
	G	I	G	A	v	L	ĸ	G	L	A	Т	G	L	S	A	G	I	S	W	I	Q	A	A	Q	Q	Q
	G	I	G	Α	v	L	ĸ	G	L	Т	L	G	L	Ρ	Α	G	I	S	W	I	A	Q	Q	Α	Q	Q
	1	_	_	-		-	%	6 C	on	ser	vat	ion		_					-	—	_				—	L
Loss of function (this work)								25		50	42			50		25					42	8	17	25		58
Gain of function ²⁵								78		21	100			100		93					43	43	7	36		50

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-4. Selected *loss-of-function* sequences

3-5. Sequences used for further study

Residue #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Melittin	G	I	G	Α	V	L	K	V	L	Τ	Τ	G	L	Ρ	Α	L		S	W		K	R	K	R	Q	Q	
MeIP5	G	I	G	A	V	L	κ	V	L	Α	Т	G	L	Ρ	A	L		S	W		L	A	A	Q	Q	L	A gain-of-function sequence
MeIN2	G	I	G	Α	V	L	κ	G	L	Α	Т	G	L	Ρ	A	G		S	W		κ	Q	Q	Α	Q	L	A loss-of-function sequence
Mel L16G	G		G	Α	V	L	κ	V	L	Т	Т	G	L	Ρ	A	G		S	W		κ	R	κ	R	Q	Q	An engineered sequence

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-6. Vesicle leakage from POPC vesicles

Single-residue change (L16G) caused a remarkable loss of function.

"Helix-breaking" glycine prevented Mel L16G from attaining helical active conformation?

3-7. Anionic lipids and cationic peptides

3-8. Leakage from POPG vesicles

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-9. Secondary structures-1

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-10. Secondary structures-2

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-11. Lysis of mammalian cells

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-12. Antibacterial activity

3-13. Proposed comformation

High tendency to helical conformation

◆<u>Mel L16G</u>

Low tendency to helical conformation

 \rightarrow unable to induce lysis of human membranes (almost

neutral)

High cationic charge at C-terminus

 \rightarrow strong binding to bacterial membranes (anionic)

Krauson, A. J. et. al. J. Am. Chem. Soc. 2015, 137, 16144.

3-14. Conclusion

- A 7776-member peptide library based on melittin was screened for *loss-of-function* variants.
- Mel L16G was prepared because large proportion of *loss-of-function* variants had L16 changed to glycine.
- Mel L16G did not induce lysis of POPC(neutral) vesicles but POPG(anionic) vesicles.
- Mel L16G exhibited potent selective cytotoxicity to both of Grampositive and negative bacterium.

Appendix

A-1. Detailed mechanism of action of antimicrobial peptides

A-2. An example of "glycine zipper"

K	esA		MscL	VacA		Msc	S
				Contraction of the second			
. Nam	No. Contraction	Slaso.			UABAL		16895
MscS	E. coli C. tepidum S. enterica	95 98 95	SVIAVLGA SLTVLSGT SVIAVLGA	AGLAVGLALQG: IGLGIGFGLQN: AGLAVGLALQG:	SLS IAD SLS	116) 119 116	heptamer
VacA	H. pylori	9	PAIVG G IA	r g tav g tvsgli	GW	30 1	hexamer
MscL	M. tuberculosis B. subtilis E. coli	15 15 17	VDLAVAVV VDLAIGVV VDLAVGVI	I G TAF T ALVTKI I G GAF G KIVTSI I G AAF G KIVSSI	STD LVN LVA	36 36 36	pentamer
KesA	S. lividans T. volcanium S. coelicolor	95 85 213	VMVAGITS IMVSGIGLI LMLSGIALI	FGLVTAALATWI LGTLTATISAYI LGVVTANIAAWI	FVG LFQ FIS	116 106 234	tetramer

Kim, S. et. al. Proc. Natl. Acad. Sci. 2005, 102, 14278.

A-3. Edman degradation

Edman, P. et. al. Acta Chem. Scand. 1950, 4, 283.

A-4. Definition of LIC₅₀

Ellens, H. et. al. *Biochemistry* **1985**, *24*, 3099.

A-6. Measurement of LIC₅₀ for selected peptides by Tb³⁺ leakage (section 2)

A-7. Oriented Circular Dichroism

http://www.ibg.kit.edu/nmr/48.php (last visited 2016/2/2)

A-8. Helix-breaking effect of Gly and Pro (relative helix propensities of amino acids)

Amino acid I	Helix propensity	Amino acid H	Helix propensity
Ala	0.00	lle	0.41
Arg ⁺	0.21	Leu	0.21
Asn	0.65	Lys ⁺	0.26
Asp	0.43	Met	0.24
Asp⁻	0.69	Phe	0.54
Cys	0.68	Pro	3.16
Gln	0.39	Ser	0.50
Glu	0.16	Thr	0.66
Glu⁻	0.40	Trp	0.49
Gly	1.00	Tyr	0.53
His	0.56	Val	0.61
His ⁺	0.66		

Nick Pace, C.; Martin Scholtz, J. Biophys. J. 1998, 75, 422.

A-9. Typical CD spectrum for α -helix and random coil

http://www.proteinchemist.com/cd/cdspec.html (last visited 2016/2/4)

A-10. Anionic nature of bacterial membrane

• Origin of negative charge

Gram-positive bacteria:

wall associated teichoic acid

Gram-negative bacteria:

acidic polymers (e.g. lipopolysaccharide)

Zasloff, M. *Nature* **2002**, *415*, 389. Hancock, R. E. W.; Sahl, H.-G. *Nat. Biotechnol.* **2006**, *24*, 1551.