Problem Session (3) – Dead End and Detours -

2015.7.25 Haruka Fujino

Please solve the three following problems (Problem 1 to 3).

CP-molecules [(+)-CP-225,917 (Phomoidride A, **0-1**, Figure 1) and (–)-CP-263,114 (Phomoidride B, **0-2**)], two novel fungal metabolites reported by a research group at Pfizer in mid-1990s, have attracted a lot of organic synthetic chemists due to both of its intriguing biological activity and a unique complex structure.

K. C. Nicolaou *et al.* accomplished their first total synthesis (racemic form in 1999 and enantiopure (albeit enantiomers of natural ones; *ent*-**0-1** and *ent*-**0-2**) form in 2000). **0-1** and **0-2** can be mutually transformed under acidic ((*ent*-)**0-1** to (*ent*-)**0-2**) or basic ((*ent*-)**0-2** to (*ent*-)**0-1**) conditions (Scheme 1).

<Problem 1: 1st Dead End ~ Construction of Maleic Anhydride>

After several errors and traials, they finally accomplished construction of maleic anhydride moiety.

Problem 1. Please fill the blank and explain the reaction mechanism of the following reaction.

<Problem 2: 2nd Dead End ~ Construction of γ-hydroxylactone>

At first they planned to construct γ -hydroxylactone ring as shown in scheme 2. Successive oxidation of diol **2-1** to dialdehyde **2-3** via hydroxyl ketone **2-2** was expected. Unfortunatelly, this plan was failed (Scheme 3).

Oxidation of diol 2-1 afforded hydroxyenone **2-2** or hydroxyaldehyde 2-7 in good selectivity dependent on oxidating reagents. If further oxidation of another hydroxyl group on 2-2/2-7 was occurred, desired dialdehyde 2-3 (so unstable that immediately hydrolated to 2-**4**) could be obtained. However, fast intramolecular hydroxyl group's attack to ketone (2-2)/aldehyde (2-7) was occurred. Afforded "cyclic-locked" compounds 2-6/2-8 were not able to be further oxidized to dialdehyde. Reverse reaction to 2-2/2-7 seemed very slow, and equilibrium is leaned towards locked compound 2-6/2-8. That is why 2-6 and 2-8 are dead compounds.

Problem 2. Further Dess-Martin oxidation of "locked" compound **2-9** to 2-10 could not be occurred under the shown condition (DMP (1.0 eq.), 25 °C). How should we **logically** tune the reaction condition in order to obtain desired compound **2-10**? One-step condition is desirable, but multi-step conversion is also acceptable. In any case, Dess-Martin periodinane (DMP) must be used as the oxidant.

<Problem 3: 3rd Dead End ~ Homologation>

Towards the total synthesis of CP-molecules, Arndt-Einstert reaction (Scheme 4c) was chosen as homologating method. Nicolaou *et al.* designed carboxylic acid **3-3** as a substrate of Arndt-Einstert reaction. Conversion from **3-1** (=**2-10**) to aldehyde **3-2** smoothly proceeded in three steps (Scheme 4a). However, any attempts to oxidize **3-2** to **3-3** was all failed and decomposition of substrates was only observed. This unexpected results may be casued by rapid decarboxylative decomposition of **3-3** generated

Scheme 3. Attempted oxidation of diol 2-1 to dialdehyde 2-4

in situ (Scheme 4b).

Considering the instability of β ketocarboxylic acid structure in **3-3**, it is natural that they conceived the usage of protected γ -hydroxylactol (ex. **3-5** and **3-7**, Scheme 5), though a number of protecting groups were all insuitable in this system (Scheme 5).

That is why they moved the next strategy, changing the order of conversion (**Old strategy**: at first

Scheme 5. Attempted conversion of protected y-hydroxylactol TBSO TBSO C₅H_c C₅H_o 0 0 1. [0] 2. Arndt-Einstert AcO C₈H₁₅ C₂H₁₅ very low yield °O 3-5 Dead End! 3-6 11 TBSO TBSO TBSO C_EH_c OH OR 0 10 1 O C₈H₁₅ TESO HC 3-1 (=2-10) 3-8 3-7 Dead End!

 $(R^{1}.R^{2})$

= various PGs)

construction of γ -hydroxylactone (3-9 to 3-10), then homologation (to 3-11) \rightarrow New strategy: at first

homolagation (**3-9** to **3-12**), then construction of γ -hydroxylactone (to **3-11**)) (Scheme 6).

Along with this new strategy, they first conducted model study against **3-13**. Arndt-Einstert homolagation and subsequent esterification smoothly affored desired ester **3-14** (Scheme 7). However, in deprotecting R^2 group to construct γ -hydroxylactone moiety, the 1,4-diol system from **3-14** rapidly collapsed into γ -lactone **3-15**, and this "locking device" would not open nomatter what they tried.

Problem 3. Choose the proper protecting groups (\mathbb{R}^1 - \mathbb{R}^3) from the view point of inhibiting undesired reaction (like shown **Scheme 7**), shorter total steps and easily deprotection. Please note that α -face of CP molecules scheme is sterically very hindered because α -face is a concave face.

Problem Session (3) [Answer] - Dead Ends and Detours -

Reference:

Sierra, M. A.; de la Torre, M. C. Dead Ends and Detours, 2004, Wiley-VCH, Weinheim.

(0) Introduction

- additive
- solvent (concentration, non-polar vs polar vs protic, aromotic, coordination (ether, HMPA, DMPU...)) temperature

0

0-26

0

0-27

- 2 - BnÓ **0-28** Tanaka, T. *et al. J. Org. Chem.* **2001**, 66, 4831.

ö

(1) Problem 1

-> Mechanism 2 is implausible.

* Stereoselectivity from 1-35 to 1-36

* auto-oxidation under basic/weak-acidic conditions

K. C. Nicolaou *et al. J. Am. Chem. Soc.* **2002**, *124*, 2190.; *Angew. Chem. Int. Ed.* **2002**, *41*, 2678, -> Acidic condition is important for promotiong tautomerization.

2.2 Answer [cf. 0.1 Tuning reaction conditions]

* Control of equilibrium ~ ring(closed)-chain(open) tautomerization

	$O \xrightarrow{Me} OH ring-chain Me \\ tautomerization HO \xrightarrow{V}$								
2-11		2-12							
[chain/open]		[ring/closed]							
♦ solvent effect			 effect of water 						
	E_T^a	2-12 (%)	H ₂ O:dioxane	2-12 (%)	H ₂ O:DMSO	2-12 (%)			
cyclohexane	30.9	43.8	0.00:1.00	45.5	0.00:1.00	36.0			
CCl ₄	32.5	42.7	0.40:0.60	43.9	0.16:0.84	32.5			
dioxane	36.0	45.5	0.61:0.39	42.7	0.36:0.64	23.0			
CHCl ₃	39.1	42.7	0.81:0.19	39.6	0.52:0.48	12.5			
acetonitrile	42.2	44.0	0.93:0.07	27.1	0.61:0.39	7.5			
DMSO	45.0	36.0	0.96:0.04	8.0	0.72:0.28	0.0			
formamide	56.6	45.8	1.00:0.00	0.0	1.00:0.00	0.0			
water	63.1	0.0		•		•			
^a Dimroth's E-	r value	of polarity		Whiting	, J. E. <i>et al. Can. J.</i>	Chem. 197	1 , 49, 3799.		

-> Addition of H₂O inhibited ring-closing.

♦ effect of temperature		2-12 (%)			
ŀ	solvent	15 °C	25 °Ò	, 50 °C	
	dioxane	46.1	45.5	42.8	
į.	DMSO	37.2	36.0	32.9	
ŀ	$H_2O:dioxane = 0.96:0.04$	11.6	8.0	4.5	
÷	$H_2O:DMSO = 0.96:0.04$	4.4	0.8	1.0	Whiting I E at al Cap I Cham 1071 40 27
Ŀ.					vvniung, j. ⊑. et al. Gan. J. Chem. 1971, 49, 378

Control of the velocity of DMP oxidation

- increase in the amount of DMP
- elebation of temperature
- effect of water in DMP oxidation

Nicalaou's success

(3) Problem 3

3.1 Background - Dead end and new plan [cf. 0.3 Changing the order]

- 10 -

3-27b₁

3-26b

easy deprotection

-> too reactive ...

3-27b₂

Able to inhibit side-reaction

3-27b₃

(See Appendix.)

3-35

+ Use of phenylanilide 3-28

K. C. Nicolaou, et al. Angew. Chem. Int. Ed. 2002, 41, 2678.

Appendix:

(1) CP molecules

& CP molecules ♦ (+)-CP-225,917 (0-1, Phomoidride A) ♦ (-)-CP-263,114 (**0-1**, Phomoidride B) 0 O Isolation by Pfizer Central Research (Dr. Kaneko's group) from an unidentified fungus on a Juniper twig in Texas J. Am. Chem. Soc. 1997, 119, 1594.

- Bioactivity
- Inhibition of squalene synthase
- Inhibition of Ras-farnesyl transferase J. Am. Chem. Soc. 1997, 119, 1594.
- Four total syntheses
- Prof. Nicolaou <rac. form> ACIE, 1999, 38, 1669; 1676. <ent. form> ACIE, 2000, 39, 1829.

• Prof. Fukuyama <as. form, 1st> JACS, 2000, 122, 7825. <as. form, 2nd> OL, 203, 5, 2235.

- Prof. Shair <as. form> JACS, 2000, 122, 7424.
- Prof. Danishefsky <rac. form> ACIE, 2000, 39, 4509.

0

(2) Convestion to acylindole

(3) Side-reation of phenylanilide with DMP

(cf. 130216_PS_Hidenori_Todoroki)

K. C. Nicolaou et al. Angew. Chem. Int. Ed. 2000, 39, 622.; 2001, 40, 202.